Multifunction Devices CIM3, CIM32, CIM33

1 Features

- Power supply AC and DC 24 ... 240 V, 16 ... 63 Hz
- 1 Change-over contact 16 A or Semiconductor output 1.2 A AC or 4 A DC
- 6 timer functions: F, Q, I, P, G, H
- 7 time ranges from 50 ms to 60 h
- Service functions ON/OFF
- LED output status display
- Railway versions available
- Relay contact in AC-mode: commutation at zero crossing ($50 / 60 \mathrm{~Hz}$)

2 General description

The CIM3, CIM32, CIM33 are compact and multifunctional timer relays with 6 functions and 7 time ranges from 50 ms to 60 hours. They are developed for a voltage range of UC $24-240 \mathrm{~V}$ and are able to switch nominal current up to 16 A at a nominal voltage of 240 V . Solid-state outputs for $1.2 \mathrm{~A}, 250 \mathrm{~V}$ AC (CIM32) and $4 \mathrm{~A}, 24 \mathrm{~V}$ DC (CIM33) are available.

The CIM3 complies with the applicable DIN standards 43880 at an installation dimension of 17.5 mm .
Due to its wide range of application, the product reduces the inventory requirement of various different types.
Technical specification is subject to change without previous notice

3 Order designation

Comat Multifunction Device
CIM3/UC24-240V (Relay Output) CIM3R/UC24-240V (Relay Output, Railway) CIM32/UC24-240V (Solid-State AC Output) CIM32R/UC24-240V (Solid-State AC Output, Railway) CIM33/UC24-240V (Solid-State DC Output) CIM33R/UC-24-240V (Solid-State DC Output, Railway)

4 Connection diagram

Input - Function:

CIM3, CIM3R

CIM32, CIM32R

CIM33, CIM33R

5 Function descriptions

5.1 Impulse generator (I), pulse start

By triggering $(\mathrm{S}) \uparrow$, the output R is switched ON and OFF alternatively according to the set times $\mathrm{t}_{1}(\mathrm{ON}$ time) and t_{2} (OFF-time).
The output pulse will be stopped at the same time as $(\mathrm{S}) \downarrow$.

5.2 Impulse generator (P), interval start

By triggering $(\mathrm{S}) \uparrow$, the output R is switched OFF and ON alternatively according to the set times t_{1} (OFF-time) and t_{2} (ON-time).
The output pulse will be stopped at the same time as (S) \downarrow.

5.3 On and off delay (F)

By triggering (S) \uparrow, the output R is switched ON after the set time t_{1}. After falling edge
(S) \downarrow, the output R is switched OFF after the set time t_{2}.

5.4 One shot leading and trailing edge (Q)

By triggering (S) \uparrow, the output R is switched ON for the set pulse length t_{1}. After falling edge (S) \downarrow, the output R is again switched ON for the set pulse length t_{2}.
5.5 On delay single shot (G), pulse command

By triggering (S) \uparrow, the output R is switched on for a pulse length of t_{2} after expiry of set time t_{1}.
The output impulse is independent of the duration of the trigger.

5.6 On delay single shot (H), continuous command

[^0]$W \square R L D D F R E L A S$

6 Specifications

6.1 General Data

6.1.1 Mechanical Data

Outside dimension
Connector
Max. screw tightening torque
Protection
Case material
Weight
Fastening

System DIN, W x H x D: $17.5 \times 75 \times 64 \mathrm{~mm}$
Screw terminal $2.5 \mathrm{~mm}^{2}$
0.4 Nm

IP20
Lexan EXL9330
approx. 70 g
TS35 DIN/EN 60715 or screw fastening M4
$-40^{\circ} \mathrm{C} . . .+85^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C} . .+60^{\circ} \mathrm{C} \quad$ (Railway: $-40^{\circ} \mathrm{C} . .+70^{\circ} \mathrm{C}$)
10 \% ... + 95 \% (not condensed)
Life cycle $\quad>100000 \mathrm{~h}\left(\right.$ at $25^{\circ} \mathrm{C}$)
(Relay contacts: see Point 6.4 Output circuit)

6.2 Electrical Data

6.2.1 Supply $\mathrm{U}_{\mathrm{B}}(\mathrm{A} 1$ - A 2$)$

Nominal operating voltage (AC/DC)
24 ... 240 V

Operating voltage (AC/DC)
Frequency range
Power consumption
Inrush current
Power consumption
16.8 ... 250 V

16 ... 63 Hz
$\leq 23 \mathrm{~mA}$
$\leq 2.5 \mathrm{~A}, \tau=100 \mu \mathrm{~s}$
$\mathrm{AC}: \leq 1.2 \mathrm{VA} ; \mathrm{DC}: \leq 430 \mathrm{~mW}$

6.2.2 Input control, $\mathrm{U}_{\mathrm{S}}(\mathrm{B} 1)$

Control voltage range (AC/DC)
Response level (AC/DC)
Power consumption
Cut off current (DC)
Glow lamp current (AC)
Hysteresis
16.8 ... 250 V
$13 \mathrm{~V} / 15 \mathrm{~V}$
$\leq 22 \mathrm{~mA}$
$\leq 0.5 \mathrm{~mA}$
$<10 \mathrm{~mA}$
approx. 1 V

6.3 Time response

6.3.1 Time ranges

The time ranges should be adjusted by the tuning button in the ratio 0.5 6 .

Time ranges

Time range tolerance
$50 \mathrm{~ms} . . .0 .6 \mathrm{~s}$
$0.5 \mathrm{~s} \ldots 6 \mathrm{~s}$
5 s ... 60 s
$0.5 \mathrm{~min} . . .6 \mathrm{~min}$
$5 \mathrm{~min} . . .60 \mathrm{~min}$
0.5 h ... 6 h

5 h ... 60 h
t min $-5 \% \ldots+0 \%$
t max $\quad-0 \% \ldots+5 \%$
$W \square R L D \quad D F R L A Y S$

6.3.2 Time constraint

Voltage stability $\leq 1 \%$ over the whole range
Temperature stability $\leq 2 \%$ over the whole range
Maximal variation under interferences
described in chapter 9.
$\leq 5 \%$

6.3.3 Other time data

Supply trigger time (Start-up time)	$\leq 45 \mathrm{~ms}$	
Min. trigger time (AC/DC)	$\geq 20 \mathrm{~ms}$	
Reset time control input (AC/DC)	$\leq 40 \mathrm{~ms}$	
Reset time power supply (AC/DC)	$\leq 50 \mathrm{~ms}$	
Power supply protection $50 / 60 \mathrm{~Hz}$	$\geq 20 \mathrm{~ms}$	
Response delay (B1)	$\leq 30 \mathrm{~ms}$	
Repetition accuracy	$\pm 0.1 \%$	
or	DC: 2 ms	$\mathrm{AC}: \pm 10 \mathrm{~ms}$

6.4 Output circuit

	Relais	Solid-State AC	Solid-State DC
Typ	CIM3/CIM3R	CIM32/ CIM32R	CIM33/ CIM33R
Output	Contact inverseur	N.O.	N.O.
Commutation at zero crossing (* Only for time ranges $>0.6 \mathrm{~s}$)	Oui*	Yes	No
Nominal current at $40{ }^{\circ} \mathrm{C}$	16 A	2 A	5 A
Nominal current at $60^{\circ} \mathrm{C}$	13 A	1.2 A	4 A
Inrush current	$30 \mathrm{~A} / 10 \mathrm{~ms}$	$100 \mathrm{~A} / 10 \mathrm{~ms}$	$40 \mathrm{~A} / 10 \mu \mathrm{~s}$
Nominal voltage	250 V	250 V AC	24 V DC
Switching power AC-1	4000 VA	300 VA	-
Contact material	AgNi 90/10	Triac	MOSFET
Recommended minimal load	$10 \mathrm{~mA} / 12 \mathrm{~V}$	$50 \mathrm{~mA} / 12 \mathrm{~V}$	$1 \mathrm{~mA} / 1 \mathrm{~V}$
Leakage current	-	1 mA	$10 \mu \mathrm{~A}$
Voltage drop	-	1.1 V	300 mV
$\mathrm{I}^{2} \mathrm{t}$	-	$78 \mathrm{~A}^{2} \mathrm{~s}$	-
Short-circuit strength	-	No	No
Life time of contacts	$\begin{aligned} & 50 \times 10^{3}(16 \mathrm{~A} \\ & 250 \vee \mathrm{AC}-1) \end{aligned}$	∞	∞
Mechanical life time	30×10^{6}	-	-

6.5 Insulation

Withstand voltages	Test voltage (RMS, 1 min)
Supply - Contact	2.5 kV
Insulation resistance $\min .(500 \mathrm{~V} D C)$	$100 \mathrm{M} \Omega$

6.6 Typical performance characteristics

CIM3, CIM3R - Breaking capacity

CIM3, CIM3R - Output current

CIM32, CIM32R - Output current

CIM3, CIM3R - Electrical endurance

CIM33, CIM33R - Output current

7 Application hints

Time setting t1
Fine adjusting of time t_{1} ．
By switching the Time range selector，maximal time range applies．

Function selector

Selection of time function （see chapter 5）

By switching the Time range selector，maximal time range applies．

Yellow LED
Output status LED
Time setting t2
Fine adjusting of time t_{2} ．

7．1 Switching state display

The state of the output relay and the timer is displayed by the yellow LED．A flashing signalizes a running timer．

LED		Relay	Time expires
Not glowing		Off	No
Glowing constantly	\cdots	On	No
Flashing short	\ldots 几ـ	Off	Yes
Flashing long	い	On	Yes

$W \square R L D \quad D F R E A Y S$

8 Dimensions

9 Standards

Interference immunity

Interference emission

Safety

Conformities, Identification

EN 61000-6-2:2005
EN 61000-4-2:2001 Level 3 (Air: 8 kV)
EN 61000-4-4:2004 Level 3 (2 kV)
EN 61000-4-5:2006 Level 3 (2 kV)
EN 61000-6-3:2007
EN 55022:2006 Class B

EN 60730-1:2000
EN 61812-1:1996+A11:1999
EN 50155:2007

CE

10 Revision history

Version	Revision date	Responsible	Modifications
$25045-02-57-401$	29.06 .2011	Sa, Cp	Version 1
$25045-002-57-002$	05.11 .2013	Bs	Minimal load with voltage, picture, logo
$25045-002-57-003$	27.05 .2015	Cp	Insulation

[^0]: By triggering (S) \uparrow, the output R is switched on for a pulse length of t_{2} after expiry of set time t_{1}. The output impulse stops with the falling edge (S)

