OVERVIEW

- Cable secured with screws
- Mounting to panel and 35 mm DIN rail
- Sturdy construction
- Excellent contact pressure on relay terminals
- No internal soldering

50IP20-I DIN

48BIP20-I DIN

78BIP20-I DIN

96IP20-I DIN

156IP20-I DIN

$X=$ Fixing holes

Specifications
Weight: 70 / 140 / 210 / 280 / 415 g
Operating temperature: $-50^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
Storage temperature: $-50^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$
Panel mounting:

- ø holes: 4.2mm
- centre distance between adjacent holes: 20 mm

Degree of protection: IP20
Dielectric strength: $2.5 \mathrm{kV} \mathrm{50Hz} 1 \mathrm{~min}$.

Mounting to Omega support: H35 to DIN 46277/3 - EN 60715 standards
Type and size of screw: M3 thread, cross head
Tightening torque: $0.5 \ldots 0.6 \mathrm{Nm}$
Width of slot: 6.9 mm
Maximum section of cable: $2 \times 2.5 \mathrm{~mm}^{2}$
Fire resistance: EN60695-2-1, UL94 - V0, EN45545-2, NFPA130
Standards: EN60255, EN60947, EN 61810, EN61373

AMRA line - Retaining clips

	$1^{\text {st }}$ part: $\mathbf{2}$ or 3 letters	$2^{\text {nd }}$ part: $\mathbf{2}$ numbers
	Identifies the type of relay	Identifies the model of socket
Example	RPB	$\mathbf{4 8}$

$2^{\text {nd }}$ part:	Socket model
43	53IL, 43IL, 73IL, 65
48	PAIR, 50IP20-I DIN, 48BIP20-I DIN, 78BIP20-I DIN, 96IP20-I DIN, 156IP20-I DIN, 50L, 48BL, 78BL, 96L ADF1, ADF2, ADF3, ADF4, ADF6 series

$1^{\text {st }}$ part:	Type of relay
RPB	Relays with cover, height 50 mm (POKs, UTM series)
RQ	Relays with cover, height 61 mm (QPOK)
RG	Relays with cover, height 86 mm (RGG series)
RC	Relays with cover, height 97mm (OK series)
RL	Relays with cover, height 109 mm (OK series)
RT	Timer relays with cover, height 97mm
RM	Relays with cover, height 118 mm (MOK series)

MTI line - Retaining clips

The designation of retaining clips is made up of two parts:

	$1^{\text {st }}$ part: 4 characters	$2^{\text {nd }}$ part: 2 numbers
	Identifies the line	Identifies the relay size
Example	VM12	$\mathbf{2 1}$

1st part:	Relay line	Relay size	
VM12	Relays of G line \rightarrow all RGxx models	21	Relays of 82mm height
		22	Relays of 112mm height
VM18	Relays of C and D line \rightarrow all RCxx and RDxx models	21	Relays of 50mm height
		22	Relays of 75mm height
		23	Relays of 82mm height

Mod. VM12xx

Mod. VM18xx
N.B. Dimensions not to scale. The height of the clip varies according to the height of the relay.

Pack containing 10 pieces.

Positive mechanical keying
 (polarizing pins)

Relay line	Ordering code	Notes	
AMRA	59	These are supplied in pairs. 1 piece ordered 2 single pins (Pack containing 25 pairs)	
MTI	VC1705	These are supplied singly. 1 piece ordered $=1$ single pin (Pack containing 100 pcs)	

Keying pins are mechanical components of semi-hexagonal shape, designed to prevent a given relay from being plugged into a socket intended for a different component. The keying configuration is determined by fitting the pins both to the relay and to the socket, in positions identified by a dedicated code.
The hexagonal geometry of the receptacle allows the polarizing pins to be inserted in 6 different positions.

Polarizing pin on relay

Polarizing pin on socket, to be fitted by the customer

Whilst the use of this component is optional, it is nonetheless strongly recommended where there are multiple relays installed on an electrical panel, for example:

- two or more relays of the same model but with different input voltages
- two or more timer relays with different response and/or logic operating times (e.g. timed to operate on pick-up and timed to operate on drop-out)
- two or more instantaneous relays of different type (e.g. monostable and bistable)

In these cases, the adoption of keying position accessories will prevent any accidental inversion of the relays by the operator, which would risk damage to the system and to the components themselves, as well as jeopardizing safety.

Fitment and position

Relays of standard design are not equipped with these accessories.
The mounting position of polarizing pins, if requested, is determined by the manufacturer.
Keying pins for sockets are fitted normally by the customer.
In this case, keying accessories for application to the socket are ordered separately.
The following relays are supplied with pins fitted in positions determined by the manufacturer:

- STATIONS series, approved by ENEL / TERNA Italia to LV15/LV16/20 specifications
- RAILWAYS - FIXED EQUIPMENT series, approved by RFI (FS Italia Group) to RFI DPRIM STF IFS TE 143 A specification
- RAILWAYS - ROLLING STOCK series

AMRA line

Positions obtainable in hexagonal receptacles

*: receptacle to be left free in the event that the relay is fitted with an antirotation pin.
In the case of polarized input (e.g. with flyback diode), the relay is fitted with an antirotation pin (detail 60). The antirotation pin is always fitted to the following relays:
POK, BIPOK, TRIPOK, QUADRIPOK, ESAPOK, BAS8NB, TM, OKTx, OKRx, OKRe-L, CLE, OKRe-Fp.

Example of selection,
pos. M on socket with 8 slots

Example of selection, pos. M on POK relay

MTI line

Positions obtainable in hexagonal receptacles

C line

2 hexagonal receptacles available on relay and on socket.

D line

4 hexagonal receptacles available on relay and on socket. Note: all relays are fitted with an antirotation guide pin.

